Search for contacts, projects,
courses and publications

Deep Learning Lab

Description

COURSE OBJECTIVES

Through practical programming exercises, students will deepen their understanding of neural network based models. They will be exposed to various practical considerations, such as hyper-parameter tuning, which are crucial to make deep learning systems to perform well in practice.

 

COURSE DESCRIPTION

This course will introduce students to practical implementations of various deep learning models using Python and the PyTorch library. Recommended lectures are: Machine Learning, and basic courses on Linear Algebra, Analysis, Probability & Statistics. While it is not a hard requirement, basic knowledge of Python will be greatly helpful.

 

LEARNING METHODS

About 50 percent of the sessions consist of guided exercises. Different programming exercises will cover various building blocks and applications of deep learning. Students will be evaluated through practical assignments.

 

EXAMINATION INFORMATION
Students will be evaluated through practical assignments.

 

RECOMMENDED COURSES
Machine Learning

 

REFERENCES
Useful references (the PDF version of these books can be downloaded free from the following links)

  • For machine learning in general: Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer. https://www.microsoft.com/en-us/research/people/cmbishop/prml-book/
  • More on recurrent neural networks: Graves, A. (2012). Supervised Sequence Labelling with Recurrent Neural Networks. Springer. https://www.cs.toronto.edu/~graves/preprint.pdf
  • For Python: Downey, A. B. (2015). Think Python. How to Think Like a Computer Scientist. 2nd Edition. Green Tea Press. http://greenteapress.com/thinkpython2/thinkpython2.pdf

People

 

Irie K.

Course director

Additional information

Semester
Fall
Academic year
2021-2022
ECTS
3
Language
English
Education
Master of Science in Artificial Intelligence, Foundation course, 1st year
Master of Science in Computational Science, Elective course, 1st year
Master of Science in Computational Science, Elective course, 2nd year
Master of Science in Informatics, Elective course, 1st year
Master of Science in Informatics, Elective course, 2nd year
PhD programme of the Faculty of Informatics, Elective course, Lecture, 1st year (2 ECTS)
PhD programme of the Faculty of Informatics, Elective course, Lecture, 2nd year (2 ECTS)