Data Design & Modeling
People
Course director
Assistant
Description
- big data dimensions: volume, velocity, variety, and veracity
- CRUD primitives (create, read, update, delete) implemented at scale
- ACID/BASE transactional properties of existing SQL/NOSQL data management technologies
- No-SQL data models and technologies: models, languages, architectures, tools
- sharding and replication strategies
- data analysis pipeline: Acquisition, Integration, Exploration, Mining, Analytics, Interpretation, and Visualization
- data quality, provenance, wrangling, and cleansing to ensure data is worthy of trust
Objectives
Data design and modeling provides the foundation for representing, storing and managing structured, semi-structured and unstructured data. Data can be persistent or volatile, processed in batches or in continuous streams. Students will learn how to select appropriate data management solutions to deal with scalability, availability, consistency, performance, and expressiveness requirements.
Sustainable development goals
- Indusrty, innovation and infrastracture
Teaching mode
In presence
Learning methods
Besides the introductory classes, students will experiment with big data technologies with hands-on use cases and practical use of cloud big data platforms.
Examination information
The exam will consist in a written session where theory questions and exercises will be responded to by students on paper. The written exam will account for 60% of the mark. Along with the course, project work activities will be carried out by students in groups. This will count for 25% of the mark. Additionally, 15% of the mark will be earned through quizzes during the course.
Education
- Master of Science in Software & Data Engineering, Lecture, 1st year
- PhD programme of the Faculty of Informatics, Lecture, Elective, 1st year (4.0 ECTS)