Search for contacts, projects,
courses and publications

Machine Learning (MSc)


Wand M.

Course director

Ashley D. R.


Gopalakrishnan A.


Herrmann V.


Hou Q.



Introductory Master's Course to Machine Learning (ML), which is both a cornerstone of Artificial Intelligence (AI) and a top skill sought by IT employers. Today ML is everywhere: search engines use it to improve answers, email programs use it to filter spam, banks use it to predict stock markets, doctors use it to recognize tumors, robots use it to localize themselves and to understand their environment, video games use it to enhance the player's experience, smartphones use it to recognize objects / faces / gestures / voices / music, etc. 

This course covers basic and advanced theory and methods of Machine Learning. From this wide field, we focus on neural networks, probabilistic models, and reinforcement learning in both theory and practice. Students will solve theoretical exercises and perform programming tasks; after just a few lectures, they will be able to implement a neural network which performs image classification better than any other known method. The intention of this course is to lay a solid groundwork for the student, such that he/she will be able to understand advanced state-of-the-art methods, to skillfully use diverse methods to solve practical problems, and to properly interpret results.

Requirements: Knowledge of calculus, linear algebra, probability theory, Python programming


Master's students will gain familiarity with state-of-the-art machine learning; focusing on neural networks, probabilistic modeling, and reinforcement learning. After successfully passing this course, students will have the knowledge to tackle state-of-the-art problems in both theory and practice.

Teaching mode

In presence

Learning methods

The course includes lectures, TA sessions, and graded exercise sheets including programming assignments.

Examination information

Written exam and graded exercise sheets, including programming assignments.