Statistics
People
Pennoni F.
Course director
Description
The course aims to introduce students to statistical inference: population and samples, likelihood function, point, and interval estimation, hypothesis testing, and prediction. The multivariate Gaussian distribution and multiple linear regression are described, along with diagnostics measures and predictions.
Elements of time series data analysis are introduced: autocovariance and autocorrelation functions and related plots, white noise and stationary processes, and AR(1) and MA(1) processes.
The course provides skills in using the semantics of the free software environment R for descriptive univariate and multivariate data analysis, inferential methods, and estimation of statistical models.
Theory and practical applications are jointly developed to support students with deep theoretical and practical knowledge. The R environment within the RStudio and RMarkdown is employed to create live code, output, and comments on the results in the same interface and to produce reproducible documents.
Objectives
The course aims to provide students with methodological and applied background on inferential statistics, multiple linear regression models, and specific descriptive and inferential procedures for analyzing financial time series.
Prior knowledge of the following topics is required: probability, expectation, and variance of a random variable, principal continuous and discrete distributions of random variables, and basic notions of matrix algebra.
Knowledge of the statistical software R is expected with the simultaneous Programming in Finance and Economics I course.
Sustainable development goals
- Partnerships for the goals
Teaching mode
In presence
Learning methods
Lectures ex-cathedra.
Students are requested to bring their laptops.
Teaching notes will be distributed during the course.
Examination information
Homework assignments and a final written exam with open questions on the theoretical part and an application to develop using the R software.
Bibliography
- Agresti, Alan, Kateri, Maria. Foundations of statistics for data scientists: with R and Python. First edition. Boca Raton: CRC Press, 2021.
- Casella, George, Berger, Roger L.. Statistical inference. 2nd ed.. Pacific Grove, CA: Duxbury Thomson Learning, 2002.
- Core Team, R. R: A Language and Environmental for Statistical Computing.: R. Foundation for Statistical Computing. Vienna (Austria): --, 2022. (https://www.R-project.org)
- Gentle, James E.. Statistical analysis of financial data: with examples in R. Boca Raton: CRC Press Taylor & Francis Group, 2020.
- Xie, Yihui. Dynamic documents with R and knitr. 2nd ed.. Boca Raton: CRC Press, 2015.
Education
- Master of Science in Economics in Finance, Lecture, 1st year