Introduction to Bayesian Computing
Persone
Docente titolare del corso
Assistente
Descrizione
Prerequisites: students need to have had an introduction to the Bayesian paradigm: prior, likelihood and posterior distribution. Topics that will be covered: Advanced Bayesian inference, Markov chains, Monte Carlo simulation, Markov chain Monte Carlo (MCMC) methods, Adaptive MCMC, MCMC convergence diagnostics, Approximate Bayesian Computation.
Obiettivi
The students will be able to estimate a complex Bayesian model and to provide corresponding uncertainty quantifications. COURSE PREREQUISITES Students need to have passed the exam “Introduction to Data Science”
Modalità di insegnamento
In presenza
Impostazione pedagogico-didattica
Weekly lectures will be complemented with tutorials and practicals (with R / Python statistical software)
Modalità d’esame
A final exam worth 100% of the final grade. Class participation will also be considered.
Offerta formativa
- Master of Science in Computational Science, Lezione, A scelta, 1° anno
- Master of Science in Computational Science, Lezione, A scelta, 2° anno
Prerequisito
- Introduction to Data Science, Wit E. J., Ceoldo G., SA 2021-2022